tipr: An R package for sensitivity analyses for unmeasured confounders

The strength of evidence provided by epidemiological and observational studies is inherently limited by the potential for unmeasured confounding. We focus on three key quantities: the observed bound of the confidence interval closest to the null, the relationship between an unmeasured confounder and the outcome, for example a plausible residual effect size for an unmeasured continuous or binary confounder, and the relationship between an unmeasured confounder and the exposure, for example a realistic mean difference or prevalence difference for this hypothetical confounder between exposure groups. Building on the methods put forth by Cornfield et al. (1959), Bross (1966), Schlesselman (1978), Rosenbaum & Rubin (1983), Lin et al. (1998), Lash et al. (2009), Rosenbaum (1986), Cinelli & Hazlett (2020), VanderWeele & Ding (2017), and Ding & VanderWeele (2016), we can use these quantities to assess how an unmeasured confounder may tip our result to insignificance.

Posted on:
September 5, 2022
1 minute read, 144 words
Peer Reviewed Article
See Also: