Causal Inference is not a statistical problem
This paper introduces a collection of four data sets, similar to Anscombe’s Quartet, that aim to highlight the challenges involved when estimating causal effects. Each of the four data sets is generated based on a distinct causal mechanism: the first involves a collider, the second involves a confounder, the third involves a mediator, and the fourth involves the induction of M-Bias by an included factor. The paper includes a mathematical summary of each data set, as well as directed acyclic graphs that depict the relationships between the variables.